容斥原理指把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
三者容斥问题3个公式
A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。A∪B∪C=A+B+C-含有两种元素-2*含有三种元素。I=A∪B∪C+D=A+B+C-含有两种元素-2*含有三种元素+D。
容斥问题本身存在包容与排斥的一种计数问题,所以在处理这一类问题的时候必须要注意扣除掉重复的部分,也要保证没有遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法。
扩展资料:
注意事项:
对于二者容斥问题一般可以用文氏图或者直接用公式来解决,下面我们总结一下二者容斥的公式。容斥问题是一种计数类问题,在计数的过程中重点是每个部分只能计一次,不能重复。
全集也就是总数,A、B表示两个集合,A、B重叠的部分叫做集合的交集,用A∩B表示,Y表示在整体中但不在A、B里面的部分,那么全集I就可以表示成A+B-A∩B+Y,这就是二者容斥的简单公式。
参考资料来源:人民网-2013年浙江省考:数学运算中的集合容斥问题
参考资料来源:百度百科-容斥原理
如何解决容斥问题
数量关系中有一类题型称之为容斥问题,考查的是集合与集合之间的关系。什么集合呢?各位小伙伴还有印象吗?所谓的集合,是指把符合条件的同一类元素用一个图形表示出来,这就是集合。一般来说,容斥问题考查集合的关系只有两种:相交和分离。
一、常用方法
容斥问题可以说是送分的模块,题型容易识别,解题方法容易。常用的两种技巧是画图法和公式法。
画图法:题目中出现“只”字,优先考虑使用画图法。使用过程:根据条件画图,在图上进行标数,最后利用面积求和。
公式法:
两集合A和B之间的关系:
满足条件A或B的情况数=满足A的情况数+满足B的情况数-两个条件都满足的情况数
三集合A、B和C之间的关系:
2018公务员考试数量关系容斥问题怎么解?
首先,给大家介绍一下“容斥问题”。把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理,应用容斥原理来解题就是容斥问题。容斥问题分2类题型:1,求定值;2,求极值。在历年的考试中,基本上都是考察求定值的问题,而求定值又分为“二者容斥”和“三者容斥”问题,考试中也基本只考察“三者容斥”。所以,今天就“三者容斥”求定值的方法,华图教育专家详细讲解如下:
一般来说,解题方法有两种:
1、 公式法:题干的数据可直接代入到二者、三者容斥的求值公式中。
三者容斥求定值公式:AUBUC=A+B+C-(AB+AC+BC)+ABC。
2、 文氏图法:当题干所给数据不能直接代入公式时,就需要利用该方法,进行思维性的理解进而解决问题。
例1:某专业有学生50人,现开设有甲、乙、丙三门选修课。有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?
A.1 B.2 C.3 D.4
【答案】B。华图解析:方法一:题干的数据可直接代入三者容斥的公式中,应用公式法解题。公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC,根据题意可得,至少选修一门课程的有40+36+30-28-26-24+20=48人,则三门均未选的有50-48=2人。
方法二:读完题干可以发现,“选修甲、乙、丙课程”在题中是并列关系,那么表示其数目的40、36、30三个数字只能用加法处理,等于106;“兼选甲、乙、丙其中两门课程”在题中是并列关系,那么表示其数目的28、26、24三个数字只能用加法处理,等于78。这样原本题中的8个数字就变为4个(50、106、78、20),而这4个数字之间也只能作和或者作差,那么得到结果的尾数必为“2”或“8”。观察选项,发现只有B项尾数是2,因此,本题答案确定就是B项。这样应用尾数的思想成功实现了“秒杀”。
例2:某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。则三项全部合格的建筑防水卷材产品有( )种。
A.37 B.36 C.35 D.34
【答案】D。华图解析:读完题干,发现题干所给数据不是公式所需的,不能直接代入公式,那么利用文氏图解题。如图,如果该图形中包含的不合格产品种数按8+10+9计算,那么灰色部分包含的种数被重复计算了一次,黑色部分包含的种数被重复计算了两次,所以至少有一项不合格的有(8+10+9)-7-2×1=18种,所以三项全部合格的有52-18=34种。
在题目的列式计算过程中,使用尾数法能够也帮助我们快速的确定答案,而减少不必要的运算。
总之,容斥问题近几年的考察形式多偏向于例2,对思维性的考察加重,更看重大家对于容斥原理的理解,而非公式的应用。所以,对于千变万化的容斥题目,一定要理解容斥的基本原理,多做练习从而提高做题速度与正确率。
三者容斥问题3个公式是什么?
三者容斥问题3个公式如下:
标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。
非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条件的- 2×三个都满足的。
列方程组:|A∪B∪C | =只满足一个条件的+只满足两个条件的+三个都满足的。
在计数时:
必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
相关推荐: