培训课程如下:
1、大数据前沿知识及hadoop入门:掌握hadoop的两种安装配置;
2、Hadoop部署进阶:熟练掌握hadoop集群搭建;
3、Java基础:利用eclipse进行简单的java程序设计,熟练使用jar文件;
4、MapReduce理论及实战:掌握根据大数据分析的目标设计和编写基于mapreduce的项目;
5、hadoop和Mahout大数据分析:熟练运用mahout的成熟算法进行特定场景的大数据分析;
数据分析培训一般要多少钱
不同的学习方式,需要的学习费用也不同,如果想要进行系统专业的学习参加一些培训班,大数据培训费用在20000元左右。如需大数据培训推荐选择达内教育。
1、通过自学方式。根据不同的自学方式还是会有一定的费用支出。比如购买教程,购买书籍等都是一种花钱。
2、在线自学方式。很多自学的学生选择购买此类在线教育的课程(大数据方向课程一般在8000-12000元),在线自学相对花费比较高,而且无老师辅导性价比非常低。
3、资源自学方式。网络上可以免费下去大量大数据学习资料及教学视频,此类自学方法适用于自学能力非常强的学生,不会有费用支出,时间成为学习成本。
4、书本自学方式。有一部分学生选择购买书籍进行自学,此类自学方法花费较少,但是学习效果不佳。
5、报大数据培训班方式。大数据培训的费用在18000元-20000元左右,不同的机构的培训费用不同。感兴趣的话点击此处,免费学习一下
想了解更多有关大数据培训费用的相关信息,推荐咨询达内教育。秉承“名师出高徒、高徒拿高薪”的教学理念,是达内公司确保教学质量的重要环节。作为美国上市职业教育公司,诚信经营,拒绝虚假宣传是该机构集团的经营理念。该机构在学员报名之前完全公开所有授课讲师的授课安排及背景资料,并与学员签订《指定授课讲师承诺书》,确保学员利益。达内IT培训机构,试听名额限时抢购。
大数据培训课程介绍,大数据学习课程要学习哪些
数据分析需要学习以下几点:
一、统计学。二、编程能力。三、数据库。四、数据仓库。五、数据分析方法。六、数据分析工具。
想要成为数据分析师应该重点学习以下两点:
1python、SQL、R语言
这些都是最基础的工具,python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。
2业务能力
数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。
当然这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。
关于数据分析师的学习可以到CDA数据分析认证中心看看。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。
数据分析师需要学哪些课程
《大数据实训课程资料》百度网盘资源免费下载
zxcv
大数据实训课程资料|云计算与虚拟化课程资源|课程实验指导书综合版|机器学习与算法分析课程资源|Spark课程资源|Python课程资源|Hadoop技术课程资源|云计算课程资料zip|微课zip|算法建模与程序示例zip|spark课程资源zip|hadoop课程资源zip|实验指导书|教学视频|教学PPT
数据分析师要学什么
通常认为“数据分析”是以下学科的组合:1计算机科学2统计3领域专业知识
学习课程:
一:计算机科学
计算机科学与编程入门(使用Python)
计算机系统工程:本课程涵盖有关计算机软件和硬件系统工程,控制复杂性的技术的主题;使用客户端-服务器设计,虚拟内存和线程的强大模块化;网络;并行活动的原子性和协调性;恢复和可靠性;隐私,安全性和加密;和计算机系统对社会的影响。
计算结构:数字系统工程简介。从MOS晶体管开始,该课程开发了一系列构件-逻辑门,组合电路和顺序电路,有限状态机,计算机,最后是完整的系统(包括硬件和软件)。
算法简介:它涵盖了用于解决计算问题的常见算法,算法范例和数据结构。
人工智能:本课程向学生介绍人工智能的基本知识表示,问题解决方法和学习方法。
使用C / C ++ / Java进行面向对象的编程
二:数理统计
应用数学:面向计算机科学和工程的离散数学简介。
概率与统计简介(使用R编程):本课程对应用中的概率和统计进行了基础介绍。主题包括:随机变量,概率分布,贝叶斯推断,假设检验,置信区间和线性回归。
线性代数(使用R编程或其他数学工具):本课程涵盖矩阵理论和线性代数
统计/机器学习(使用R编程):介绍数据分析的核心算法,例如线性和非线性回归的类型,分类技术,例如逻辑回归,朴素贝叶斯,SVM,决策树(香草决策树,随机森林,增强),无监督学习方法(例如聚类,神经网络介绍)
高级机器学习(使用Python编程):专为对人工智能有浓厚兴趣的学生而设,侧重于图像/文本处理的神经网络。
三:领域专长
理想情况下,这些应该基于工作兴趣/领域,以便每个学生都选择一个专门领域(例如,Web开发,移动应用程序开发,数据分析,营销分析,供应链,财务,制造等)。
数据分析专业课程这里的核心主题应该是:
数据收集和清理:这应该包括使用开源工具(例如Python / R)从网上抓取数据,连接到数据库等。此外,数据清理和ETL概念(例如重复数据删除,合并,丢失的数据估计技术也无法创建)分析数据集。
数据可视化和报告:使用SAS / SAP或R / Python等工具创建BI仪表板,通过可视化和数据故事演示来展示见解并数据分析。
数据分析应用程序1/2:以业务为中心完成端到端数据分析项目。在最后几年中,应该重复两次该主题。它应该非常重要地包括连接到实际数据库和在生产中部署模型,而不仅仅是对静态数据集的临时数据分析。
高级数据计算:此处的学生应使用开源和专有工具(例如Hadoop / Spark,HANA或其他MPP数据库)创建具有大规模数据分析的项目
扩展阅读:
还将包括以下内容:
1 网络工程基础。原因:毕业生应该了解计算机网络,以便能够与之合作,进行管理,并在需要时改善组织的网络和数据架构。主题包括:网络工程,数据库,数据仓库。
2 研究方法论:能够使用定量和定性方法学从假说生成到产生业务建议的系统方式设计项目。
3 非结构化数据分析:学生应该了解文本挖掘,自然语言处理,社交媒体挖掘,网络挖掘以及此类应用程序的基础知识。这些也可以采用选修课的形式。
有一点需要注意的是,优秀的数据分析师和商业智能并不以工具为重点。理想地讲授任何工具(R / SAS / SAP / Python /其他),作为数据分析理论概念的补充。例如,使用统计和概率进行R编程。适用于神经网络和其他机器学习任务的Python。具有数据可视化和数据报告概念的SAS VA或SAP Lumira。具有数据库概念的SQL等。这是一个缺少许多新的数据分析程序的领域,因此结果是产生的毕业生只是应用程序开发人员或用户,而不能解决现实世界中的问题。
商业数据分析课程
问题一:想考大数据分析师应该学什么? 数据分析师是为了适应大数据时代要求,加强正规化、专业化、职业化的数据分析师人才队伍建设,进一步提升我国数据分析员师的职业素质和能力水平,经国家相关部委统一颁布实施,旨在通过掌握大量行业数据以及科学的计算工具,将经济学原理用数学模型表示,科学合理的分析投资和运营项目未来的收益及风险情况,为做出科学合理的决策提供依据。
数据分析师由工业和信息化部教育与考试中心和中国商业联合会数据分析专业委员会统一安排考核,考试共有三门《数据分析基础》《量化经营》《量化投资》,每门100分,60分及格制
问题二:数据分析师需要掌握哪些能力,需要做哪些准备 不管是什么行业的数据分析师,必须要掌握的技能是:
该行业的行业知识和经验,不能低于行业专家的平均水平
必须具有的数学知识,例如统计分析、数理统计、模糊数学、线性代数、建模方法等等
IT技术:数据库技术、大数据技术、离散数学算法。甚至是编程技术,例如C、Fortran、Java、falsh等
我曾经作为销售,在类似行当工作多年,一点点体会仅供参考。
-:(来自淘宝网的京东藏宝斋
问题三:想找数据分析的实习 应该学些什么 我做过一段时间 不过是和推广混着做的,个人觉得电商的数据分析没什么大的前途,如果真的想在数据分析行业发展的话,建议你找个有机会学建模的行业,那样出去以后到哪都吃香,或者找个需要用到统计学软件的行业,那样也好,如果你只是准备阶段建议你参加一下全国数学建模大赛,像多元统计分析,计量经济学,数理统计,这些都挺重要的
问题四:想要做数据分析师应选择什么专业? 统计(有统计理论)、计算机专业(会编程序实现)。其实专业关系不大,只要想做,都可以慢慢的做到
问题五:如何自学成为数据分析师 中文专业的前期要多花点功夫了啊,我是数学专业的,大学做过建模,所有统计学的东西还有一些软件多少接触过一点。建议你自学的话,excel软件和spss先熟悉一下,找两本书看看,《谁说菜鸟不会数据分析》是入门的,可以看一看,先了解一下吧,数据分析的东西还是要多实践的。如果你现在工作跟数据分析没有什么关系的话,转业工作可能有点困难,这种情况建议去考个证书吧,虽然现在国内数据分析刚起步,还没有太有含金量的证书,不过你这种情况有肯定比没有好,我就去考了一个,考CPDA吧,还有一个CDA,我选考的CPDA,说是CDA国外有机构什么的,但是我找不到任何网站可以查到这个证书,问他们他们也不说,我怕找工作人家要查查不到,但是CPDA工信部网站能查询证书信息的,所以对就业帮助可能会大一些,工作还是有参考作用的,不过指望靠班学到很多还是不可能,只是让你了解入门,手上多个敲门砖。数据分析属于技术类工种,要多实践,数据采集和挖掘是基础,这些工作门槛比数据分析岗相对低一些,好找,希望对你有帮助。
问题六:如果想成为一名数据分析师,需要具备哪些基本知识 一、 办公软件
1) 熟练使用excel, Access,Visio等MS Office办公软件,可以制作相关的原型; (MS即microsoft微软,MS Office 是微软提供的系列软件,Word, Excel, PowerPoint, Access, OutLook,Publisher,InfoPath这7个办公软件中,常用的是前4个。) 2) 重点掌握EXCEL表,会使用高级功能,能快速制作报表,熟练使用EXCEL VBA;
二、 数据分析软件及方法
1)熟练使用各种数理统计、数据分析、数据挖掘工具软件,熟悉各种网站分析软件的应用,如Google Analytics 、百度统计、Omniture等;
2)具备相关数据分析软件的使用经验SPSS\SAS\EVIEW\STATA\R\Weka……
3)至少精通使用IBM Intelligent Miner、SAS Enterprise Miner、SPSS Clementine、LEVEL5Quest、SGI、WinRosa、ExcelVBA、S-plus、Matlab、SSIS等等常见数据挖掘软件中的一个进行数据挖掘的 开发工作;
4)熟练使用至少一种网站流量分析工具(Google Analytics、Webtrends、百度统计等),并掌握分析工具的部署、配置优化和权限管理;
5)精通一种或多种数据挖掘算法(如聚类、回归、决策树等); 6)熟悉维基编辑者优先; 7)使用软件的要求;
(71)掌握数据分析、挖掘方法,具备使用Excel、SQL、SPSS/SAS、Powerpoint等工具处理和分析较大量级数据的能力;
(72)能够综合使用各种数理统计、数据分析、制表绘图等软件进行图表、图像以及文字处理;
(73)掌握常用的数据统计、分析方法,有敏锐的洞察力和数据感觉,优秀的数据分析能力;
(74)能够综合使用各种数理统计、数据分析、数据挖掘、制表绘图等软件进行具有基本数据美感的图表、图像以及文字处理 。
三、 数据库语言
1)熟悉Linux操作系统及至少一种脚本语言(Shell/Perl/Python);
2)熟练掌握C/C++/Java中的一种,有分布式平台(如Hadoop)开发经验者优先; 3)熟悉数据库原理及SQL基本操作;
(31)了解Mysql,postgresql,sql server等数据库原理,熟悉SQL,具备很强的学习能力,写过程序,会perl,python等脚本语言者优先; (32)熟练应用mysql的select,update等sql语句; 4)熟悉sql server或其他主流数据库,熟悉olap原理; 5)熟悉Oracle或其他大型数据库。
四、 思维能力等方面
1)具备良好的行业分析、判断能力、及文字表达能力;
2)沟通、协调能力强,有较高的数据敏感性及分析报告写作能力; 3)理解网站运营的常识,能从问题中引申出解决方案,提供设计改进建议;
4)具有良好经济学、统计学及相关领域的理论基础,熟悉数理统计、数据分析或市场研究的工作方法,具有较强的数据分析能力;
5)熟悉数据分析与数理统计理论,具有相关课程研修经历。
五、 其他要求
1)较强的英文听说读写能力,英语6级以上;
2)文笔良好;
3)了解seo,sem优先;
4)知识要求:同时具备统计学、数据库、经济学三个领域的基础知识;英语四级或以上、熟悉指标英文>>
问题七:学数据分析师有专业要求吗? 你好,是没有专业要求的,只要你数据基础不是太差,通过下面几步就可以成为一名数据分析师。
第一步:统计概率理论基础
这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。
第二步:软件操作结合分析模型进行实际运用
关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
第三步:数据挖掘或者数据分析方向性选择
其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。
第四步:数据分析业务应用
这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要,而这个能力是需要在工作之中一点一滴的积累,也许目前是做零售,会用到一些相关回归方法,但转行做电商,又会用到其他的挖掘等方法。业务虽千变万化,但是分析方法却万变不离其宗,所以掌握好技术用到任何一个环境靠的只有是业务经验的积累。
当然,考个CDA的数据分析师证书就更好了。
问题八:数据分析师学习方式是什么,数据分析师课程内容包括什么,数据分析师在哪里培训? 一数据分析师的学习方式是面授和远程。
面授
项目数据分析师培训课程涉及到经济学、市场营销学、财务管理学、计量经济学、预测学、金融学等多方面知识,需要学员具备全面性理论基础知识贮备。我们对各个学科中项目分析所要用到的知识点进行了深入分析,在讲义中详细说明,使学员可在相对准确的领域内迅速掌握知识并加以运用。做到能够让学员将课本上所学的东西真正变为可以利用的有效工具。
远程学习
时间为一年整,采取先进的同步教学方式,保证学习质量,具体特点如下:
a、面授期间(8天面授),更新课程五次,通过每周的更新课程,让学员不仅可以在面授前提前预习基础知识,而且可以通过远程学习中心提交作业、知识点自我测试、考试复习、习题解答、在线答疑、案例参与等综合项目更好的掌握知识。
b、面授结束后,学员还有11个月的远程学习时间,每月一次的课件更新,使学员不仅能顺利适应项目数据分析师的认证考试,而且可以掌握各种数据分析的拓展知识和技能,为分析师在未来能够胜任专业分析工作奠定深厚基础。
c、远程学习不仅有丰富的文字学习内容,而且大比例增加了音频、视频课件,使学员可以通过生动的课件完成阶段性学习。
d、远程学习中心为学员提供学习计划制定、班级交流、继续教育等功能,帮助学员自觉学习、实现更好的学习效果。
二数据分析的课程有四本书:数据分析基础、量化经营、量化投资、战略管理
三、数据分析师在全国各地都有授权管理中心上课,北京、上海、广东等都有,具体的要看您在哪里。
问题九:数据分析师培训,什么人适合学数据分析 数据分析师需要学习以下几个方面的课程:
(1)数据管理。
a、数据获取。
企业需求:数据库访问、外部数据文件读入
案例分析:使用产品信息文件演示spss的数据读入共能。
b、数据管理。
企业需求:对大型数据进行编码、清理、转换。
案例分析:使用银行信用违约信息文件spss相应过程。
1)数据的选择、合并与拆分、检查异常值。
2)新变量生成,SPSS函数。
3)使用SPSS变换数据结构――转置和重组。
4)常用的描述性统计分析功能。频率过程、描述过程、探索过程。
c、数据探索和报表呈现。
企业需求:对企业级数据进行探索,主要涉及图形的使用。spss报表输出。
案例分析:企业绩效文件,如何生成美观清晰的报告。
1)制作报表前对变量的检查
2)制作报表的中对不同类型的数据处理
3) 报表生成功能与其他选项的区别
(2)数据处理
a、相关与差异分析。
案例分析:产品合格率的相关与差异分析。
b、线性预测。
企业需求: 探索影响企业效率的因素,并进一步预测企业效率。
案例分析:产品合格率的影响因素及其预测分析。
c、因子分析。
企业需求: 需要抽取影响企业效率的主要因素,进行重点投资
案例分析:客户购买力信息研究。
d、聚类分析。
企业需求: 需要了解购买产品的客户信息
案例分析:客户购买力信息研究
e、bootstrap。
案例分析: bootstrap抽样。
(3)SPSS代码
SPSS代码应用
问题十:大数据分析师 应该要学什么知识? 1、需要有应用数学、统计学、数量经济学专业本科或者工学硕士层次水平的数学知识背景。
2、至少熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门。
3、至少能够用Acess等进行数据库开发;
4、至少掌握一门数学软件:matalab,mathmatics进行新模型的构建。
5、至少掌握一门编程语言;
6,当然还要其他应用领域方面的知识,比如市场营销、经济统计学等,因为这是数据分析的主要应用领域。
数据分析师要学什么课程
A 电商营销数据分析课程主讲老师是谁
电商营销数据分析主讲老师是Webtrekk中国区技术和咨询负责人(Webtrekk,德国最大的网站数据分析服务提供商),数据研究与商业应用博主,资深数据分析领域专家。拥有丰富的数据项目工作经验。
B 数据分析有哪些相关的培训课程
据分析师的课程包括两个层面的内容,只有把数据分析师的这些课程都学会并且运用,你就可以成为一名顶级的大数据分析师。
一、课程层面
第一级别:数据分析课程内容主要是从理论-实操-案例应用步步进阶,能让学员充分掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。
第二级别:在第一级别的基础上,第二级别包括建模分析师与大数据分析师,即为企业决策提供及时有效、易实现、可信赖的数据支持。建模分析师,指在ZF、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。本课程针对数据挖掘整套流程,以金融、电信、电商和零售业为案例背景深入讲授数据挖掘的主要算法。并将SAS Enterprise Miner、SPSS Moderler、SAS编程和SQL进行有效的结合,让学员胜任全方位的数据挖掘运用场景。大数据分析师,本课程以大数据分析为目标,从数据分析基础、JAVA语言入门和linux操作系统入门知识学起,系统介绍Hadoop、HDFS、MapRece和Hbase等理论知识和hadoop的生态环境,详细演示hadoop三种模式的安装配置,以案例的形式,重点讲解基于mahout项目的大数据分析之聚类、分类以及主题推荐。通过演示实际的大数据分析案例,使学员能在较短的时间内理解大数据分析的真实价值,掌握如何使用hadoop架构应用于大数据分析过程,使学员能有一个快速提升成为兼有理论和实战的大数据分析师,从而更好地适应当前互联网经济背景下对大数据分析师需求的旺盛的就业形势。
二、数据分析师的知识结构
C 0基础学商业数据分析
基本不会。商业分来析主要是三方面源:1行业深度,需要经济学等相关常识以及对该领域深耕的实际情况积累;2数据挖掘分析基础,统计学基础,数据挖掘一般方法,编程统计技巧;3表达能力,PPT,报告写作等能力。
基本上都是需要基本功+常年的经验能力累计才能做好的工作。所以一个课程只能是个介绍。
D 我想学数据分析师,请大神推荐靠谱的学习的地方!
目前主流的2种
商业联合会数据分析专业委员会和工信部教育与考试中心主主办的 《项目数据分析师》 英文简称:CPDA
人民大学经济论坛主办的 《数据分析师》 英文简称:CDA
关于CPDA
CPDA全名叫项目数据分析师,国内最早的数据分析培训,原先是信息产业部在组织,目前由中商联数据分析专业委员会和工信部教育与考试中心主管,内容主要针对的是基于企业在投资、经营、管理领域的分析,类似MBA课程。
课程包括《数据分析基础》、《战略管理》、《量化投资》、《量化经营》等,涵盖企业运营的每个环节,以数据分析方法来进行管理、经营、投资等分析,应该说企业的管理层适合学习CPDA来进行管理层面的分析和指导。
目前很多课程没有实际可操作模型,而CPDA就有,其中介绍很多企业生产、管理、经营、投资分析和决策的案例和模型,目的也是为了使广大学员能够在管理岗位上能够有理论支持、实际模型可操作,使大家有切实可操作的实际模型去分析。
关于CDA
CDA全名是数据分析师,由中国人民大学经济论坛主办。主要是讲数据分析方法、技术和软件操作为主。
课程包括:1、统计概率基础;2、数据分析模型方法;3、软件、工具的运用。如果这些技术没有,也不可能会玩数据分析。所以,CDA主要是针对数据分析师必备的技术性培训,是从数据的获取、储存、整理、清洗、分析,检验到结果报告一个整体的流程,以及数据分析一些软件的操作。
总结
因此,对于这两者的区别,我想大家应该有一个清晰的认识,如果您是已经工作有数据分析基础技术的,想做到管理层,可以选择CPDA;
如果你是入门、转行零基础、基础薄弱、或只想做技术性工作的学员,首先的一步是掌握数据分析的方法和技术,这时你可以选择CDA。
另外,如果是研究算法的高级分析师、高级挖掘工程师、大数据分析师,可以参考其他相关的名师培训。
sc-cpda 数据分析公众交流平台
E 为什么要学商业数据分析
希腊有一个著名的谷堆悖论。“如果1粒谷专子属落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。但是,事实并非如此。”
这个悖论说的,就是告诉我们量变产生质变,需要一个明显的分割线。如果说,量是一个量化的数据,质是一个结论的话。那么,数据分析做的,就是要分析量,从而引向“定性”、”定质"。定量的了解历史的规律(“质”),从而预测未来。
关于了解历史规律,常见的数据分析思路,如上图,大概介绍四种。分组对比、趋势分析、异常分析、排名分析;目的主要是三个:
1) 找到周期规律
2) 找到各个分类的特征
3) 找到异常、极值
了解历史,是为了更好的预测未来。
找到了周期规律,我们就可以知道哪些波动是正常的不用惊慌,哪些是需要注意的。
了解了特征,我们就可以总结一些相同分类的事务,可能也具备这一特征;
了解了异常和极值,我们就可以深入分析,找到解决它的原因去规避,或者采取措施去发扬极值。
F 电商营销数据分析这门课程模块三如何进行营销数据分析的知识点有哪些
电商营销数据分析这门课模块三如何进行营销数据分析的知识点包含模块导引,单元一电子商务营销分析包含什么,单元二营销分析体系的搭建,单元三营销分析维度,单元四如何进行广告效果分析。
G 近几年商业分析很火,这个专业具体学什么
BA的诞生源于互联网和大数据。自从移动互联网出现以后,企业经营的数据大大增加,大数据成为企业运营和决策的重要依据。以前企业用Excel, Word做做财务、市场、运营的分析就可以了,现在出现了大量的数据需要企业去分析,那谁可以分析这么多的数据呢? 毫无疑问,以前靠着简单的Office分析数据的时代一去不复返了,随着“物联网”的兴起,大数据未来必将在经济中扮演非常关键角色。而传统专业设置下的大学,并没有与之相匹配的专业,较为接近的是统计学、计算机科学、商科。但是这几个专业都不能完全满足大数据行业的需求。
统计专业学生不了解商业运营规律和市场,而且没有计算机科学相关的知识,面对储存数据的系统、分析数据的开源软件时,知识储备不足;计算机专业学生擅长写代码,但不了解商业和数据统计的知识,甚至很多在商业沟通能力方面有所欠缺;而商科学生则没有理工科背景,没有过硬的统计学和编程技能。因此面对行业和市场的需求以及复合型人才缺口的存在,BA专业就此诞生了。
学生会学到统计建模、数据管理、可视化和优化、信息安全、决策等方面的知识,同时学生会学习以下所需的编程工具 分析大量和非结构化数据集,将分析结果转化为可提高业务绩效的决策 , 有效地向高层决策者展示复杂的数据。
H 商业分析师与数据分析师有什么不同
商业分析师:
一般来说,商业分析师都需要有一定的MBA背景,对市场、上下游、专商业有强烈的洞察力,具备系统属的资料收集、市场研究、整理能力,及良好的文字处理能力,具备较强的逻辑思维能力,敏锐的观察能力和独立分析能力。很多商业分析师是需要独立完成一份行业分析报告,站在整个行业的角度,去看待本公司、所有竞品公司、上下游的各种关系与优劣势。
需要懂得各类的策略模型与方法论:如SCP、RFM、波士顿矩阵、金字塔原理、5W2H、MECE分析、SWOT分析等等
数据分析师:
数据分析师更偏向针对某个公司产品,进行分析建模,驱动增长。
需要有较强的落地能力,与各业务部门的配合的沟通能力。
需要懂得统计学相关知识,寻找大数据中隐藏的用户行为规律,掌握基本统计模型及统计学知识:回归分析、聚类分析、时间序列、多元统计,贝叶斯等,如果在互联网研究产品的话需要了解:漏斗分析、产品转化等
I 电商营销数据分析课程讲什么内容
在大数据复时代下,电商企业关注产品外制,更需要关注数据背后所反映的问题。如所有企业都关注的财务数据和行业竞争环境数据外,电商企业更要关注: 1.网站运营数据:PV、UV、评论数、跳出率、新用户注册购买率、广告投放转化率、平均每个用户获取成本等,SEM流量占比; 2.用户数据:网站用户年龄、用户主要购物时间、用户地域分布情况、用户使用浏览器、用户职业等相关人群属性数据。 针对电商企业对数据分析岗位的人才技能,本课程有针对性地通过在线学习向学习者传递电商营销数据分析所涵盖的数据收集、挖掘和分析、报告及应用的完整数据分析知识,且数据分析相关教学外,本课程还涵盖了电商企业组织架构、工作流程、工作方法和数据分析的工作定位等从事电商相关行业的必备知识,对于学员了解行业、深入行业和应用行业有积极意义。 最后,对于课程中的每个教学环节,几乎都涵盖了个人知识技能以及真实电商的分析和应用案例,可以帮助学员迅速进入角色,并且学以致用。
数据分析师学的课程如下:
1数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3分析思维
比如结构化思维、思维导图、或百度脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。
5开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。
关于数据分析师的学习可以到CDA的认证机构了解一下,全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。
相关推荐: