> 首页 > 生活 > 护肤品 > 什么时候用差商什么时候用差分

什么时候用差商什么时候用差分

来源:网络 作者:网友上传 时间:04-10 手机版

1、差分法是在比较两个分数大小时,用直除法或者化同法等其他速算方式难以解决时可以采取的一种速算方式。是基于高中数学并应用于公考的资料分析速算高级技巧。

2、差分法是微分方程的一种近似数值解法。具体地讲,差分法就是把微分用有限差分代替,把导数用有限差商代替,从而把基本方程和边界条件(一般均为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程的问题改换成为求解代数方程的问题。在弹性力学中,用差分法和变分法解平面问题。

3、差商即均差,一阶差商是一阶导数的近似值。对等步长(h)的离散函数f(x),其n阶差商就是它的n阶差分与其步长的n次幂的比值。例如n=1时,若差分取向前的或向后的,所得一阶差商就是函数的导数的一阶近似;若差分取中心的,则所得一阶差商是导数的二阶近似。

何谓差分和差商,如何构造偏导数的差商近似

有限元法,有限差分法和有限体积法的区别

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和解题步骤可归纳为

(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

公务员考试中的差分法是什么意思?

差分比较法的概述

差分法(difference methods,简称DM)是一种微分方程数值方法,是通过有限差分来近似导数,从而寻求微分方程的近似解。

它把微分用有限差分代替,把导数用有限差商代替,从而把基本方程和边界条件(一般均为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程的问题改换成为求解代数方程的问题

接下来给介绍三步走的步骤来学会差分法操作,在此只要会用即可,对于它的操作原理暂不做介绍。

第一,先计算出两个分式的差分式。差分式即为分子减去分子作为新分子,分母减分母作为新分母的分式。例如:62/51和65/55的差分式为3/4。

第二,将原来两个分式与差分式排列,只要保证分子分母都大的那个分式位于中间位置即可。如62/51, 65/55,3/4或者3/4,65/55,62/51均可

第三,比较最左边分式和最右边分式的大小,则三个分式间的大小具有传递性。例如第二步中,62/51>3/4,所以62/51>65/55>3/4,即可比较出题目所需的大小。

什么叫差分如何用差分

差分:difference差分,又名差分函数或差分运算,是数学中的一个概念。它将原函数 映射到 。差分运算,相应于微分运算,是微积分中重要的一个概念。差分的定义分为前向差分和逆向差分两种。

前向差分

函数的前向差分通常简称为函数的差分。对于函数,如果:,则称为的一阶前向差分。在微积分学中的有限差分(finite differences),前向差分通常是微分在离散的函数中的等效运算。差分方程的解法也与微分方程的解法相似。当是多项式时,前向差分为Delta算子,一种线性算子。前向差分会将多项式阶数降低1。

逆向差分

对于函数,如果:则称为的一阶逆向差分。

相关推荐:

润唇膏有什么作用

什么时候用差商什么时候用差分

掉睫毛是什么原因

女成人剪发教程

垫下巴多久能消肿

古装化妆盘发教程

干性皮肤是什么原因

美甲掉漆补救方法

声明:《什么时候用差商什么时候用差分》一文由排行榜大全(网友上传 )网友供稿,版权归原作者本人所有,转载请注明出处。如果您对文章有异议,可在反馈入口提交处理!

最近更新

  • 润唇膏有什么作用

    润唇膏在秋冬季节可是不少女性朋友都会在包包必备的单品,不仅因为它携带方便,能够快速缓解唇部干燥,小小的唇膏可是还能够发挥更多的神奇作用...

    护肤品 日期:2023-04-10

  • 油污怎样去除方法

    1、碱面是家里经常使用的食用碱,用来清除厨房油垢比较不错,既省钱,又对身体无害。把碱面放在热水里充分溶解,待十分钟后,把抹布在碱水里涮洗涮洗...

    百科 日期:2023-04-10

  • 什么时候用差商什么时候用差分

    1、差分法是在比较两个分数大小时,用直除法或者化同法等其他速算方式难以解决时可以采取的一种速算方式。是基于高中数学并应用于公考的资料...

    护肤品 日期:2023-04-10

  • 陈宇宙结局不得往生吗

    陈宇宙结局不得往生吗 1、《风吹半夏》原著陈宇宙结局不得往生了,陈宇宙得了白血病,最后没办法医治,去世了。2、小陈是污染滩涂出主意的人,当时...

    电影 日期:2023-04-10

  • 生牛肉如何做最好吃而且不油腻

    主料:牛肉辅料:青蒜苗,芹菜,莴笋。其他:高汤一碗、生抽、料酒、干红椒、花椒、姜丝、四川豆瓣酱。做法:1、配料用的蔬菜切段,备用;牛肉尽可能切薄片...

    百科 日期:2023-04-10

  • 掉睫毛是什么原因

    睫毛有着放大双眼的神奇效果,一直都是眼妆中的重头戏!不过天天刷睫毛膏、经常种睫毛,甚至黏假睫毛,虽然能让睫毛立马浓密眼睛放电,但也会在不经...

    护肤品 日期:2023-04-10

  • 车贷8万3年每月还多少

    车贷8万3年每月还多少其实不管车贷多少钱,都可以用公式计算,一般来说没有太大区别。文末我会帮你附上计算方法,你也可以自己算。贷款8万元的汽...

    汽车 日期:2023-04-10

  • 男士内裤为什么在中国始终热度不高

    是因为很多人不了解也不知道怎么选男士内裤。另一个主要的原因,还没有讲究起来。外衣关系到人的面子,内衣别人一般看不到。只有真正爱惜自己的...

    百科 日期:2023-04-10

邮箱不能为空
留下您的宝贵意见