> 首页 > 生活 > 百科 > 语音识别技术究竟可以发展到什么地步

语音识别技术究竟可以发展到什么地步

来源:网络 作者:佚名 时间:04-04 手机版

语音识别技术,也被称为自动语音识别ASR,其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列,与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。

语音识别技术发展如何

01

声音是人的一种生理行为,也是一种独特的生物特征,其涉及了上百个信息因素,通过这些信息因素就能够构成一个专门的声音签名。

02

语音识别技术的历史是很悠久的,在早很多年之前就出现了相关技术的研发,现在语音识别技术大致分成了扬声器验证以及扬声器识别两种方式。

03

根据相关专业人士的介绍,现在的语音识别技术大部分都是用于银行领域,在银行中将语音识别技术作为生物识别打基础,特别针对于电话提供服务方面。

04

就发展情况而言,由于现在指纹识别以及面部识别技术的飞速发展,语音识别技术的发展领域是比较受限的,只能说现在是针对需求行业进行研发。

语音识别可以应用到哪些场景?

语音识别可以应用到的场景:
1. 智能家居
相对于传统的控制、交互形式,在智能家居领域中使用语音交互对于用户会更加便捷。亚马逊、谷歌、百度、小米、阿里巴巴等企业都先后发布了自己的智能音箱产品。目前,智能音箱作为所有智能家居交互的入口,扮演着一个非常重要的角色,且不用附加在一些重服务家电上。除了常规的日程设置、音乐播放、天气等信息查询,智能音箱还可以控制灯光、空调、电视、窗帘、门窗、安防与监控等。未来的家居场景,是全屋产品的智能化,届时语音与其他技术会更加深度地融合。图1-4展示了几种智能音箱的形态。
2. 智慧生活与办公
智慧生活是一个比较宽泛的场景,包括语音控制硬件、可穿戴设备和语音助手等。智能可穿戴设备趋于小屏化、无屏化的特点决定了智能语音将成为其天然入口,无论是眼镜、耳机,还是手表、手环,语音交互会更方便也更自然。语音助手更是语音识别深度学习时代最早的落地产品,根据Strategy Analytics的预计,到2023年,90%的智能手机都会配备AI语音助手。
其他的消费级产品还包括翻译机、录音笔、语音输入法等,这些产品强依赖于语音识别技术本身的准确率,在办公、教育、旅游等领域的应用也都越来越广泛。
3. 智能汽车
另一个正在飞速发展的智能语音落地场景,是智能汽车。除了L4,L5级别的自动驾驶,车载语音交互作为智能座舱中的一部分,在未来汽车形态中扮演着更加重要的角色。与传统车载系统通过按键或者屏幕操控不同,多模态融合检测、智能语音交互、多屏互动手势操作等一系列技术,将成为下一代智能座舱的标配。由于车内环境相对稳定,语音识别率较高,因此座舱内是部署语音交互的极佳落地场景。由此带来的司机双手的解放不仅能增强安全性,也能极大地提高用户驾驶体验。
4. 语音质检
语音质检普遍被应用在智能外呼和客服领域。通过语音识别与声纹识别的相关技术,不仅可以对客户说话的内容进行语音语义分析,挖掘客户潜在需求,进行用户画像,提供个性化的客户服务与产品的精准营销,还可以对对话内容的合规性进行稽核与审查,进一步提升服务满意度。
5. 智慧物流
拣货是物流仓储作业中成本最高的一项任务,占总体作业量的50%~70%。语音拣货是仓库作业人员通过蓝牙耳麦与语音系统对话推进拣货工作的方式。传统的语音拣选是人与人沟通,指示拣货员挑选货物,耗时长,成本高。而通过语音识别和合成技术,可以使仓库作业人员直接与仓库管理系统进行对话沟通。系统通过语音指导作业员到指定区域的库位拿取或放置货品;作业员通过语言进行动作确认,仓库管理系统直接识别作业人员的语音进行相应的数据处理。

语音识别的发展史

1952年贝尔研究所Davis等人研究成功了世界上第一个能识别10个英文数字发音的实验系统。
1960年英国的Denes等人研究成功了第一个计算机语音识别系统。
大规模的语音识别 研究是在进入了70年代以后,在小词汇量、孤立词的识别方面取得了实质性的进展。
进入80年代以后,研究的重点逐渐转向大词汇量、非特定人连续语音识别。在研究思路上也发生了重大变化,即由传统的基于标准模板匹配的技术思路开始转向基于统计模型 (HMM)的技术思路。此外,再次提出了将神经网络技术引入语音识别问题的技术思路。
进入90年代以后,在语音识别的系统框架方面并没有什么重大突破。但是,在语音识别技术的应用及产品化方面出现了很大的进展。
DARPA(Defense Advanced Research Projects Agency)是在70年代由美国国防部远景研究计划局资助的一项10年计划,其旨在支持语言理解系统的研究开发工作。
到了80年代,美国国防部远景研究计划局又资助了一项为期10年的DARPA战略计划,其中包括噪声下的语音识别和会话(口语)识别系统,识别任务设定为“(1000单词)连续语音数据库管理”。
到了90年代,这一DARPA计划仍在持续进行中。其研究重点已转向识别装置中的自然语言处理部分,识别任务设定为“航空旅行信息检索”。
日本也在1981年的第五代计算机计划中提出了有关语音识别输入-输出自然语言的宏伟目标,虽然没能实现预期目标,但是有关语音识别技术的研究有了大幅度的加强和进展。
1987年起,日本又拟出新的国家项目---高级人机口语接口和自动电话翻译系统。 中国的语音识别研究起始于1958年,由中国科学院声学所利用电子管电路识别10个元音。直至1973年才由中国科学院声学所开始计算机语音识别。由于当时条件的限制,中国的语音识别研究工作一直处于缓慢发展的阶段。
进入80年代以后,随着计算机应用技术在中国逐渐普及和应用以及数字信号技术的进一步发展,国内许多单位具备了研究语音技术的基本条件。与此同时,国际上语音识别技术在经过了多年的沉寂之后重又成为研究的热点,发展迅速。就在这种形式下,国内许多单位纷纷投入到这项研究工作中去。
1986年3月中国高科技发展计划(863计划)启动,语音识别作为智能计算机系统研究的一个重要组成部分而被专门列为研究课题。在863计划的支持下,中国开始了有组织的语音识别技术的研究,并决定了每隔两年召开一次语音识别的专题会议。从此中国的语音识别技术进入了一个前所未有的发展阶段。 这一时期的语音识别方法基本上是采用传统的模式识别策略。其中以苏联的Velichko和Zagoruyko、日本的迫江和千叶,以及当时在美国的板仓等人的研究工作最具有代表性。
· 苏联的研究为模式识别应用于语音识别这一领域奠定了基础;
· 日本的研究则展示了如何利用动态规划技术在待识语音模式与标准语音模式之间进行非线性时间匹配的方法;
·板仓的研究提出了如何将线性预测分析技术(LPC)加以扩展,使之用于语音信号的特征抽取的方法。 目前在大词汇语音识别方面处于领先地位的IBM语音研究小组,就是在70年代开始了它的大词汇语音识别研究工作的。AT&T的贝尔研究所也开始了一系列有关非特定人语音识别的实验。这一研究历经10年,其成果是确立了如何制作用于非特定人语音识别的标准模板的方法。
这一时期所取得的重大进展有:
⑴隐式马尔科夫模型(HMM)技术的成熟和不断完善成为语音识别的主流方法。
⑵以知识为基础的语音识别的研究日益受到重视。在进行连续语音识别的时候,除了识别声学信息外,更多地利用各种语言知识,诸如构词、句法、语义、对话背景方面等的知识来帮助进一步对语音作出识别和理解。同时在语音识别研究领域,还产生了基于统计概率的语言模型。
⑶人工神经网络在语音识别中的应用研究的兴起。在这些研究中,大部分采用基于反向传播算法(BP算法)的多层感知网络。人工神经网络具有区分复杂的分类边界的能力,显然它十分有助于模式划分。特别是在电话语音识别方面,由于其有着广泛的应用前景,成了当前语音识别应用的一个热点。
另外,面向个人用途的连续语音听写机技术也日趋完善。这方面,最具代表性的是IBM的ViaVoice和Dragon公司的Dragon Dictate系统。这些系统具有说话人自适应能力,新用户不需要对全部词汇进行训练,便可在使用中不断提高识别率。
中国的语音识别技术的发展 : ⑴在北京有中科院声学所、自动化所、清华大学、北方交通大学等科研机构和高等院校。另外,还有哈尔滨工业大学、中国科技大学、四川大学等也纷纷行动起来。
⑵现在,国内有不少语音识别系统已研制成功。这些系统的性能各具特色。
· 在孤立字大词汇量语音识别方面,最具代表性的要数92年清华大学电子工程系与中国电子器件公司合作研制成功的THED-919特定人语音识别与理解实时系统。
· 在连续语音识别方面,91年12月四川大学计算机中心在微机上实现了一个主题受限的特定人连续英语——汉语语音翻译演示系统。
·在非特定人语音识别方面,有清华大学计算机科学与技术系在87年研制的声控电话查号系统并投入实际使用。

语音识别技术的发展历史

语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry系统,它是第一个可以识别十个英文数字的语音识别系统。
但真正取得实质性进展,并将其作为一个重要的课题开展研究则是在60年代末70年代初。这首先是因为计算机技术的发展为语音识别的实现提供了硬件和软件的可能,更重要的是语音信号线性预测编码(LPC)技术和动态时间规整(DTW)技术的提出,有效的解决了语音信号的特征提取和不等长匹配问题。这一时期的语音识别主要基于模板匹配原理,研究的领域局限在特定人,小词汇表的孤立词识别,实现了基于线性预测倒谱和DTW技术的特定人孤立词语音识别系统;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。
随着应用领域的扩大,小词汇表、特定人、孤立词等这些对语音识别的约束条件需要放宽,与此同时也带来了许多新的问题:第一,词汇表的扩大使得模板的选取和建立发生困难;第二,连续语音中,各个音素、音节以及词之间没有明显的边界,各个发音单位存在受上下文强烈影响的协同发音(Co-articulation)现象;第三,非特定人识别时,不同的人说相同的话相应的声学特征有很大的差异,即使相同的人在不同的时间、生理、心理状态下,说同样内容的话也会有很大的差异;第四,识别的语音中有背景噪声或其他干扰。因此原有的模板匹配方法已不再适用。
实验室语音识别研究的巨大突破产生于20世纪80年代末:人们终于在实验室突破了大词汇量、连续语音和非特定人这三大障碍,第一次把这三个特性都集成在一个系统中,比较典型的是卡耐基梅隆大学(CarnegieMellonUniversity)的Sphinx系统,它是第一个高性能的非特定人、大词汇量连续语音识别系统。
这一时期,语音识别研究进一步走向深入,其显著特征是HMM模型和人工神经元网络(ANN)在语音识别中的成功应用。HMM模型的广泛应用应归功于AT&TBell实验室Rabiner等科学家的努力,他们把原本艰涩的HMM纯数学模型工程化,从而为更多研究者了解和认识,从而使统计方法成为了语音识别技术的主流。
统计方法将研究者的视线从微观转向宏观,不再刻意追求语音特征的细化,而是更多地从整体平均(统计)的角度来建立最佳的语音识别系统。在声学模型方面,以Markov链为基础的语音序列建模方法HMM(隐式Markov链)比较有效地解决了语音信号短时稳定、长时时变的特性,并且能根据一些基本建模单元构造成连续语音的句子模型,达到了比较高的建模精度和建模灵活性。在语言层面上,通过统计真实大规模语料的词之间同现概率即N元统计模型来区分识别带来的模糊音和同音词。另外,人工神经网络方法、基于文法规则的语言处理机制等也在语音识别中得到了应用。
20世纪90年代前期,许多著名的大公司如IBM、苹果、AT&T和NTT都对语音识别系统的实用化研究投以巨资。语音识别技术有一个很好的评估机制,那就是识别的准确率,而这项指标在20世纪90年代中后期实验室研究中得到了不断的提高。比较有代表性的系统有:IBM公司推出的ViaVoice和DragonSystem公司的NaturallySpeaking,Nuance公司的NuanceVoicePlatform语音平台,Microsoft的Whisper,Sun的VoiceTone等。
其中IBM公司于1997年开发出汉语ViaVoice语音识别系统,次年又开发出可以识别上海话、广东话和四川话等地方口音的语音识别系统ViaVoice'98。它带有一个32,000词的基本词汇表,可以扩展到65,000词,还包括办公常用词条,具有“纠错机制”,其平均识别率可以达到95%。该系统对新闻语音识别具有较高的精度,是目前具有代表性的汉语连续语音识别系统。 我国语音识别研究工作起步于五十年代,但近年来发展很快。研究水平也从实验室逐步走向实用。从1987年开始执行国家863计划后,国家863智能计算机专家组为语音识别技术研究专门立项,每两年滚动一次。我国语音识别技术的研究水平已经基本上与国外同步,在汉语语音识别技术上还有自己的特点与优势,并达到国际先进水平。中科院自动化所、声学所、清华大学、北京大学、哈尔滨工业大学、上海交通大学、中国科技大学、北京邮电大学、华中科技大学等科研机构都有实验室进行过语音识别方面的研究,其中具有代表性的研究单位为清华大学电子工程系与中科院自动化研究所模式识别国家重点实验室。
清华大学电子工程系语音技术与专用芯片设计课题组,研发的非特定人汉语数码串连续语音识别系统的识别精度,达到94.8%(不定长数字串)和96.8%(定长数字串)。在有5%的拒识率情况下,系统识别率可以达到96.9%(不定长数字串)和98.7%(定长数字串),这是目前国际最好的识别结果之一,其性能已经接近实用水平。研发的5000词邮包校核非特定人连续语音识别系统的识别率达到98.73%,前三选识别率达99.96%;并且可以识别普通话与四川话两种语言,达到实用要求。
中科院自动化所及其所属模式科技(Pattek)公司2002年发布了他们共同推出的面向不同计算平台和应用的“天语”中文语音系列产品——PattekASR,结束了中文语音识别产品自1998年以来一直由国外公司垄断的历史。

相关推荐:

语音识别技术究竟可以发展到什么地步

深圳那里有吃窑鸡的

马芬蛋糕是如何做的

下载电脑系统漏洞补丁有必要吗

深圳那个酒吧又好玩又便宜

马芬蛋糕是什么

为什么智能机在拆解的时候只有iPhone被设计成从屏幕打开而大部分Android设备都是从后盖打开

深圳哪有专业的摄影培训机构

标签: [db:标签]

声明:《语音识别技术究竟可以发展到什么地步》一文由排行榜大全(佚名 )网友供稿,版权归原作者本人所有,转载请注明出处。如果您对文章有异议,可在反馈入口提交处理!

最近更新

  • 语音识别技术究竟可以发展到什么地步

    语音识别技术,也被称为自动语音识别ASR,其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列,与说话人...

    百科 日期:2023-04-04

  • 深圳那里有吃窑鸡的

    1、明哥窖鸡,地址:深圳市宝安区宝民一路86附16号;2、香盈窖鸡,地址:深圳市宝安区燕罗街道塘下涌社区致和路24号;3、黄毛窖鸡水库鱼庄,地址:深圳市宝...

    百科 日期:2023-04-04

  • 马芬蛋糕是如何做的

    马芬蛋糕的做法:主料:冰皮粉200克、鸡蛋80克。辅料:杏仁片适量。调料:色拉油110克、牛奶40克。步骤:把冰皮粉倒入容器中,加入色拉油、牛奶、鸡蛋;搅...

    百科 日期:2023-04-04

  • 下载电脑系统漏洞补丁有必要吗

    系统漏洞一般只会被特定的利用漏洞病毒钻空子,比如以前著名的冲击波病毒。对病毒文件清理之后,如果不补上漏洞,那么只要机器联网,就会反复感染。...

    百科 日期:2023-04-04

  • 深圳那个酒吧又好玩又便宜

    1、晚装空间,地址:广东深圳福田区皇岗商务中心2号楼。2、深圳本色酒吧,地址:福田区东园路1号东园大厦3楼。3、UKLUB 优客,地址:南山区白石路8号欢...

    百科 日期:2023-04-04

  • 马芬蛋糕是什么

    马芬蛋糕是西式松饼面包的一种,主要有美式马芬和英式马芬两种。日常生活中接触到的大多为美式马芬,是用小麦粉、色拉油或黄油、牛奶、泡打粉等...

    百科 日期:2023-04-04

  • 为什么智能机在拆解的时候只有iPhone被设计成从屏幕打开而大部分Android设备都是从后盖打开

    Phone机身结构的布局在5的时候就已经定型了,即使是有大改动的X,也只是缩短了主板加了两块电池而已左右竖条的布局是最能利用空间塞电池的布局,...

    百科 日期:2023-04-04

  • 深圳哪有专业的摄影培训机构

    1、深圳品尚摄影培训,地址在广东省深圳市龙岗区荣华路。2、布兰摄影培训,地址在广东省深圳市福田区。3、新展摄影培训,地址在广东省深圳市龙岗...

    百科 日期:2023-04-04

百科排行榜精选

邮箱不能为空
留下您的宝贵意见