> 首页 > 生活 > 百科 > 为什么音乐的多普勒效应不明显

为什么音乐的多普勒效应不明显

来源:网络 作者:佚名 时间:04-14 手机版

如果就音高变化量来看,如果相对速度的变化一样,音高变化也是一样的但是警笛是固定频率的单音,只要频率稍有变动都会感觉很明显乐音尤其是人声,即使是同一个音高,频率都是在一定范围内不停变化的,不会准确的固定在某一个频率上,比如A4标准频率为440Hz,但人在唱的时候,由于各种原因会上下摆动导致实际音高在430至450或是更大范围内,人的听觉会下意识的忽略这种变化,也就同时忽略了部分多普勒效应引起的变化所以同样的多普勒效应,乐音就没有警笛那么明显。

在验证多普勒效应并由测量数据计算声速实验中,引起误差的原因有哪些?

误差原因:

1、频率源不稳定

2、频率计不准确

3、运行速度不准确

4、介质(一般是空气)不稳定,受干扰,风吹

5、多银拦铅台仪器放在一起,相互干扰

6、如果是超声波,距离太远造成锋好声波衰减过大,引起测频的判别误差。

7、测定发射信号与接收信号的谐振频率时不够准确,可能导致误差。

8、由于衡慧电路中乘法运算器等并非完全在理想状态下工作的系统误差。

9、利用数据采集卡处理数据和读取数据时可能产生误差。

多普勒效应

多普勒效应

多普勒效应是为纪念伟大的科学家Christian Doppler而命名的,他于1842年首先提出了这一理论。但是由于缺少试验设备,多普勒但是没有用试验验证、几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。

多普勒效应指出,波在波源移向观察者时频率变高,而在波源远离观察者时频率变低。当观察者移动时也能得到同样的结论。假设原有波源的波长为λ,波速为c,观察者移动速度为v:

当观察者走近波源时观察到的波源频率为(v+c)/λ,如果观察者远离波源,则观察到的波源频率为(v-c)/λ。

一个常被使用的例子是火车的汽笛声,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。

如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括光波、电磁波。科学家哈勃Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论搭肆。他发现远离银河系的天体发射的光线频率变低,即移向光谱的红端,称为红移,天体距离越远红移越大,这说明这些天体在远离银河系。反之,如果天体正移向银河系,则光线会发生蓝移。

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。

在单色的情况下,我们的眼睛感知的颜色可以解释为光波振动的频率,或者解释为,在1秒钟内电磁场所交替为变化的次数。在可见区域,这种效率越低,就越趋向于红色,频率越高的,就趋向于蓝色——紫色。比如,由氦——氖激光所产生的鲜红色对应的频率为4.74×10^14赫兹,而汞灯的紫色对应的频率则在7×10^14赫兹以上。这个原则同样适用于声波:声音的高低的感觉对应于声音对耳朵的鼓膜施加压力的振动频率(高频声音尖厉,低频声音低沉)。

如果波源是固定不动的,不动的接收者所接收的波的振动与波源发射的波的节奏相同:发射频率等于接收频率。如果波源相对于接收者来说是移动的,比如相互远离,那么情况就不一样了。相对于接收者来说,波源产生的两个波峰之间的距离拉长了,因此两上波峰到达接收者所用的时间也变长了。那么到达接收者时频率大或降低,所感知的颜色向红色移动(如果波源向接收者靠近,情况则相反)。为了让读者对这个效应的影响大小有个概念,在图4中显示了多普勒频移,近似给出了一个正在远离的光源在相对速度知仿轿变化时所接收到的频率。例如,在上面提到的氦——氖激光的红色谱线,当波源的速度相当于光速的一半时(参见图中所画的虚线),接收到的频率由4.74×10^14赫兹下降到4.74×10^14赫兹,这个数值大幅度地降移到红外线的频段。

一、声波的多普勒效应

在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低. 为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低.这种现象称为多普勒效应,它是用发现者克里斯蒂安·多普勒(Christian Doppler,1803-1853)的名字命名的,多普勒是奥地利物理学家和数学家.他于1842年首先发现了这种效应.为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好像波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被拉伸了. 因此,声音听起来就显得低沉.定量分析得到f1=(u+v0)/(u-vs)f ,其中vs为波源相对于介质的速度,v0为观察者相对于介质的速度,f表示波源的固有频率,u表示波在静止介质中的传播速度. 当观察者朝波源运动时,v0取正号;当观察者背离波源(即顺着波源)运动时,v0取负号. 当波源朝观察者运动时vs前面取负号;前波源背离观察者运动时vs取正号. 从上式易知,当观察者与声源相互靠近时,f1>f ;当观察者与声源相互远离时。f1<f

二、光波的多普勒效应

具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应. 因为法国物理学家斐索(1819-1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化. 如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移.

三、光的多普勒效应的应用

20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去.1929年哈勃根据光普红移总结出著名的哈勃定律:星系的远离速度v与距地球的距离r成正比,即v=Hr,H为哈勃常数.根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小. 由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫(G. Gamow)和他的同事们提出大爆炸宇宙模型. 20世纪60年代以来,大爆炸宇宙模型逐渐被广泛接受,以致被天文学家称为宇宙的"标准模型" .

多普勒-斐索效应使人们对距地球任意远的天体的运动的研究成为可能,这只要分析一下接收到的光的频谱就行了. 1868年,英国天文学家W. 哈金斯用这种办法测量了天狼星的视向速度(即物体远离我们而去的速度),得出了46 km/s的速度值

恒定.但是当火车靠近你以后并离你远去的时候频率会改变很大

多普勒效应是什么?

多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。

他认为声波频率在声源移向观察者时变高,而在声源远离观察者时变低。一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。

把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动是更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

广义的多普勒效应

多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括光波、电磁波。科学家Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论.他发现远处银河系的光线频率在变高,即移向光谱的红端.这就是红色多普勒频移,或称红移.若银河系正移向他,光线就成为蓝移.。

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑"多普勒效应"。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。

一、声波的多普勒效应

在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低. 为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高袭咐,声调听起来就高;反之声调听起来就低.这种现象称为多普勒效应,它是用发现者克拍族纯里斯蒂安·多普勒(Christian Doppler,1803-1853)的名字命名的,多普勒是奥地利物理学家和数学家.他于1842年首先发现了这种效应.为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好象波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好象波被拉伸了. 因此,声音听起来就显得低沉.定量分析得到f1=(u+v0)/(u-vs)f ,其中vs为波源相对于介质的速度,v0为观察者相对于介质的速度,f表示波源的固有频率,u表示波在静止介质中的传播速度. 当观察者朝波源运动时,v0取正号;当观察者背离波源(即顺着波源)运动时,v0取负号. 当波源朝观察者运动时vs前面取负号;前波源背离观察者运动时vs取正号. 从上式易知,当观察者与声源相互靠近时,f1>f;当观察者与声源相互远离时,f1<f 。

二、光波(包括电磁波)的多普勒效应

具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应. 因为法国物理学家斐索(1819-1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之处在于,光波穗孙频率的变化使人感觉到是颜色的变化. 如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移.

多普勒效应的广泛应用

一、雷达测速仪

检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。

二、多普勒效应在医学上的应用

在临床上,多普勒效应的应用也不断增多,近年来迅速发展起超声脉冲Doppler检查仪,当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。

三、宇宙学研究中的多普勒现象

20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去。1929年哈勃根据光普红移总结出著名的哈勃定律:星系的远离速度v与距地球的距离r成正比,即v=Hr,H为哈勃常数.根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小. 由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物。 因而1948年伽莫夫(G. Gamow)和他的同事们提出大爆炸宇宙模型。 20世纪60年代以来,大爆炸宇宙模型逐渐被广泛接受,以致被天文学家称为宇宙的"标准模型" 。

多普勒-斐索效应使人们对距地球任意远的天体的运动的研究成为可能,这只要分析一下接收到的光的频谱就行了。 1868年,英国天文学家W. 哈金斯用这种办法测量了天狼星的视向速度(即物体远离我们而去的速度),得出了46 km/s的速度值。

四、移动通信中的多普勒效应

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑"多普勒效应"。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但在卫星移动通信中,当飞机移向卫星时,频率变高,远离卫星时,频率变低,而且由于飞机的速度十分快,所以我们在卫星移动通信中要充分考虑"多普勒效应"。为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。

相关推荐:

为什么音乐的多普勒效应不明显

类似哟你看起来一定很好吃的小说

世界上保存最完整的神话是什么

柠檬摘果后的修剪方法

类似幽兰露的小说

进击的巨人里为什么不直接拿钥匙去地下室

世界三大最美日落是哪三个

洋葱冬天管理方法

标签: [db:标签]

声明:《为什么音乐的多普勒效应不明显》一文由排行榜大全(佚名 )网友供稿,版权归原作者本人所有,转载请注明出处。如果您对文章有异议,可在反馈入口提交处理!

最近更新

  • 为什么音乐的多普勒效应不明显

    如果就音高变化量来看,如果相对速度的变化一样,音高变化也是一样的但是警笛是固定频率的单音,只要频率稍有变动都会感觉很明显乐音尤其是人声,即...

    百科 日期:2023-04-14

  • 类似哟你看起来一定很好吃的小说

    类似《哟,你看起来一定很好吃》的小说:1、《无爱之欢》,作者:准拟佳期;2、《哥哥们的玩物》,作者:准拟佳期;3、《苏肉难寻》,作者:苏栩;4、《陛下请臣服...

    百科 日期:2023-04-14

  • 世界上保存最完整的神话是什么

    希腊文化源于古老的爱琴文明,他们是西洋文明的始祖,具有卓越的天性和不凡的想像力。在那原始时代,他们对自然现象,对人的生死,都感到神秘和难解,于...

    百科 日期:2023-04-14

  • 奔腾x80变速箱油加注口在哪里

    奔腾x80变速箱油加注口在哪里奔腾x80变速箱机油加注口位于变速箱底部。变速箱油和汽车油都有润滑功能,但两者明显的区别是变速箱油不需要频...

    汽车 日期:2023-04-14

  • 校园女生模拟器怎么把发型全解

    去那个理发店,买了票送给你想让换发型的那个人,那个人拿到后就会去理发店。如果还是不满意他(她)的发型,就再次买票给他(她),直到满意。1、进入游戏...

    护肤品 日期:2023-04-14

  • 柠檬摘果后的修剪方法

    1、柠檬摘果后下垂枝长势更易衰弱,可逐年回缩剪去先端下垂部分,抬高枝群位置,继续结果。对顶端较多的直立大枝,可按强树疏强枝,中庸树疏直立枝的...

    百科 日期:2023-04-14

  • 身体美白的误区

    夏天转眼就到,身体美白的程序也要即时启动!不认不认还需认,所谓「一白遮三丑」,爱美的亚洲女生一般都会想每一寸肌肤都白皙透亮。面部美白的方...

    护肤品 日期:2023-04-14

  • 美白片真的能变白吗

    1、美白是有上限的,一个人能有多白,完全取决于基因。如果是因为被晒黑了通过美白丸、美白精华等方式是能够帮助皮肤恢复到原始的肤色的,但是无...

    护肤品 日期:2023-04-14

百科排行榜精选

邮箱不能为空
留下您的宝贵意见