量纲分析法又称为因次分析法,是一种数学分析方法,通过量纲分析,可以正确的分析各变量之间的关系,简化试验和成果整理,所以量纲分析是我们分析流体运动的有力工具。 自然科学中一种重要的研究方法,它根据一切量所必须具有的形式来分析判断事物间数量关系所遵循的一般规律。通过量纲分析可以检查反映物理现象规律的方程在计量方面是否正确,甚至可提供寻找物理现象某些规律的线索。
量纲分析的概述
各种物理量之间存在着关系,说明它们的结构必然由若干统一的基础成分所组成,并按各成分的多寡形成量与量间的千差万别,正如世间万物仅由百余种化学元素所构成。物理量的这种基本构成成分统称为量纲。由于物理学研究物质在时空中的演化和运动,所以一切定量问题最终离不开质量、时间和长度这三种基本量。因而最适宜于选取M、T、L做为这三种基本量的量纲。一切其他导出量的量纲可按定义或客观规律表成这三种基本量的量纲组合。基本量有多种取法,在力学中通常取质量、长度和时间为基本量,其他量(例如速度、力等)可按一定规则由基本量导出。任何其他三类量纲互相独立的导出量也可作为基本量。性质上完全不同的两物理量可具有相同的量纲,例如功和力矩就是如此。任何正确反映物理现象规律的方程,其两端各项都必须具有相同的量纲。
物理量的大小,除按个数计的外,通常由一个或几个实数连同所采用的单位表示。这种数一般称为“名数”,意为不标明单位名称就没有意义的数。名数的实数值可以随不同的对象处于不同的时间或空间而不同。这是由于对象不同或本身发生变动而引起的实质变化。但名数值还会随所采用的单位大小而改变,而且是单位大小的连续函数。因为单位的大小可以任选,所以名数值的上述改变不是客观的实质变化。实质变化的规律是学科本身的研究对象。研究得出的各种各样的物理定律被表成数学方程的形式,控制着有关量本身的消长。非实质变化则不牵涉实质客观过程,只反映单位的主观选择。客观规律当然不涉及依赖于主观,这就要求数值的非实质变化必须保证事物客观大小的绝对性。具体说,任何两个一定大小的同类量,不论测量的单位如何,它们的相对大小永远不变,即它们的比值对任何单位都必须是个定值。同类量相对大小对于单位的不变性是度量的根本原则。违反这一原则,量度将没有任何意义。根据这个原则,可以导出以下的重要结论:在确定的单位制中,所有物理量的量纲都具有基本量量纲的幂次积形式(证明从略),即它们的形式可写成αaβbγc,其中α、β、γ为基本量的量纲;幂次a、b、c为常数,但不一定是整数。
常用力学量的MLT量纲式见下表。角度的量纲式指数全为零,所以属于无量纲数,它是单位尺度变换下的不变量。
常见力学量的量纲式力学量定义量纲式质量基本量M长度基本量L时间基本量T速度长度/时间LT-1加速度长度/时间LT-2力质量×加速度MLT-2动量质量×速度MLT-1能量、功力×长度ML2T-2力矩力×长度ML2T-2角度弧长/半径1(M0L0T0)角速度角度/时间T-1角加速度角速度/时间T-2转动惯量质量×半径平方ML2密度质量/体积ML-1压力力/面积ML-1T-2作用量能量×时间ML2T-1粘性系数单位速度梯度下单位面积上的力ML-1T-1
建立数学模型的方法
建立数学模型的方法如下:
1.类比法。
数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。
2.量纲分析法。
量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
3.差分法。
差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验。
4.变分法。
变分法是处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。这样的泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。现实中很多现象可以表达为泛函极小问题,即变分问题。变分问题的求解方法通常有两种:古典变分法和最优控制论。受基础知识的制约,数学建模竞赛大专组的建模方法使用变分法较少。
相关推荐: