动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位由峰电位和后电位组成,峰电位是动作电位的主要组成成分。动作电位可以分成去极化、复极化、超极化三个过程。动作电位的产生符合“全或无定律”,即刺激只要达到阈值,就能引发动作电位。
产生过程:动作电位上升支:大于或等于阈刺激、细胞部分去极化、钠离子少量内流、去极化至阈电位水平、钠离子内流与去极化形成正反馈、基本达到钠离子平衡电位;
动作电位下降支:膜去极化达、定电位水平、钠离子内流停止、钾离子迅速
什么是动作电位,是怎样形成的?
动作电位(1)概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。
(2)形成条件:
①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+ -K+泵的转运)。
②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。
③可兴奋组织或细胞受阈上刺激。
(3)形成过程:≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→达到Na+平衡电位(膜内为正膜外为负)→形成动作电位上升支。
膜去极化达一定电位水平→Na+内流停止、K+迅速外流→形成动作电位下降支。
(4)形成机制:动作电位上升支——Na+内流所致。
动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。
动作电位下降支——K+外流所致。
动作电位时细胞受到刺激时细胞膜产生的一次可逆的、可传导的电位变化。产生的机制为①阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。②Na+通道失活,而
K+通道开放,K+外流,复极化形成动作电位的下降支。③钠泵的作用,将进入膜内的Na+泵出膜外,同时将膜外多余的
K+泵入膜内,恢复兴奋前是离子分布的浓度。
动作电位形成的过程是什么
一、动作电位时细胞受到刺激时细胞膜产生的一次可逆的、可传导的电位变化。产生的机制为:
1、阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。
2、Na+通道失活,而 K+通道开放,K+外流,复极化形成动作电位的下降支。
3、钠泵的作用,将进入膜内的Na+泵出膜外,同时将膜外多余的 K+泵入膜内,恢复兴奋前时离子分布的浓度。
二、在神经干上放置一对记录电极a、b,静息时记录不到电位差。当在神经干一段进行刺激时,表现为负电位变化的动作电位由此极端向另一端传导。当其传导到a电极时,a、b之间出现电位差,a负b正。此时可记录到上相波,当动作电位传至两电极之间是时,a、b又处于等电位状态。动作电位进一步传导当到达b电极时,a、b之间又出现电位差,a正b负,此时可记录到下相波。然后记录又回到零位,如此获得的呈双相变化的记录就称为双相动作电位。
三、当a、b之间的a或b处的神经干被阻断或损伤时,由于损伤电位的存在,在进行刺激之前就能记录到电位。当在神经干另一端进行刺激时,a极的电位变化实际上是负电位抵消了损伤电位所致,动作电位传至阻断或损伤处,不能再引起电位的变化,故整个记录呈现为单相动作电位。
什么是静息电位和动作电位,他们是如何形成的?
生物电现象是指生物细胞在生命活动过程中所伴随的电现象。它与细胞兴奋的产生和传导有着密切关系。细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。心电图、脑电图等均是由生物电引导出来的。
1.静息电位及其产生原理
静息电位是指细胞在安静时,存在于膜内外的电位差。生物电产生的原理可用"离子学说"解释。该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A-)无通透性,膜内大分子A-被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位。因此,静息电位主要是K+外流所形成的电-化学平衡电位。
2.动作电位及其产生原理
细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止。因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位。
什么是动作电位?
动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
动作电位的特点:
1、“全或无”
只有阈刺激或阈上刺激才能引起动作电位。动作电位过程中膜电位的去极化是由钠通道开放所致,因此刺激引起膜去极化,只是使膜电位从静息电位达到阈电位水平,而与动作电位的最终水平无关。因此,阈刺激与任何强度的阈上刺激引起的动作电位水平是相同的,这就被称之为“全或无”。
2、不能叠加
因为动作电位具有“全或无”的特性,因此动作电位不可能产生任何意义上的叠加或总和。
3、不衰减性传导
在细胞膜上任意一点产生动作电位,那整个细胞膜都会经历一次完全相同的动作电位,其形状与幅度均不发生变化。
动作电位的产生过程
细胞受刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,这种电位变化称为动作电位。
动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。
l.去极化过程
当细胞受刺激而兴奋时,膜对na+通透性增大,对k+通透性减小,于是细胞外的na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。当促使na+内流的浓度梯度和阻止na+内流的电梯度,这两种拮抗力量相等时,na+的净内流停止。因此,可以说动作电位的去极化过程相当于na+内流所形成的电一化学平衡电位。
2.复极化过程
当细胞膜除极到峰值时,细胞膜的na+通道迅速关闭,而对k+的通透性增大,于是细胞内的k+便顺其浓度梯度向细胞外扩散,导致膜内负电位增大,直至恢复到静息时的数值。
可兴奋细胞每发生一次动作电位,总会有一部分na+在去极化中扩散到细胞内,并有一部分k+在复极过程中扩散到细胞外。这样就激活了na+-k+依赖式
atp酶即na+-k+泵,于是钠泵加速运转,将胞内多余的na+泵出胞外,同时把胞外增多的k+泵进胞内,以恢复静息状态的离子分布,保持细胞的正常兴奋性。如果说静息电位是兴奋性的基础,那么,动作电位是可兴奋细胞兴奋的标志。
简述动作电位的产生机制
动作电位的产生机制:在静息状态时,细胞膜外Na+浓度大于膜内,Na+有向膜内扩散的趋势,而且静息时膜内存在着相当数值的负电位,这种电场力也吸引Na+向膜内移动。动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
动作电位上升支——Na+内流所致。动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。
动作电位下降支——K+外流所致。动作电位时细胞受到刺激时细胞膜产生的一次可逆的、可传导的电位变化。
产生的机制为:①阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。②Na+通道失活,而 K+通道开放,K+外流,复极化形成动作电位的下降支。③钠泵的作用,将进入膜内的Na+泵出膜外,同时将膜外多余的 K+泵入膜内,恢复兴奋前时离子分布的浓度。
什么是动作电位
神经纤维受到刺激时,膜上接受刺激的地点失去极性,透性发生变化,一些Na+通道张开,膜外大量的Na+顺浓度梯度从Na+通道流入膜内。这就进一步使膜失去极性,使更多的Na+通道张开,结果更多的Na+流入。这是一个正反馈的倍增过程,这一过程使膜内外的Na+达到平衡,膜的电位从静息时的-70mV转变到0,并继续转变到+35mV(动作电位)。也就是说,原来是负电性的膜内暂时地转变为正电性,原来是正电性的膜外反而变成负电性的了。此时膜内阳离子多了,Na+通道逐渐关闭起来。由于此时膜的极性并未恢复到原来的静息电位,Na+通道在遇到刺激时不能重新张开,所以这时的Na+通道是处于失活状态的。只有等到膜恢复到原初的静息电位时,关闭的Na+通道遇到刺激才能再张开而使Na+从外面流入。Na+通道这一短暂的失活时期相当于(神经传导的)不应期。Na+流入神经纤维后,膜内正离子多了,此时K+通道的门打开,膜对K+的透性提高,于是K+顺浓度梯度从膜内流出。由于K+的流出,膜内恢复原来的负电性,膜外也恢复原来的正电性,这样就出现了膜的再极化,即膜恢复原来的静息电位。这一周期的电位变化,即从Na+的渗入而使膜发生极性的变化,从原来的外正内负变成外负内正,到K+的渗出使膜恢复到原来的外正内负,称为动作电位(action potential)。
静息电位和动作电位的产生和传导机制
当神经细胞处于静息状态时,k+通道开放(Na+通道关闭),这时k+会从浓度高的膜内向浓度低的膜外运动,使膜外带正电,膜内带负电。膜外正电的产生阻止了膜内k+的继续外流,使膜电位不再发生变化。
静息状态时,细胞膜外Na+浓度大于膜内,Na+有向膜内扩散的趋势,而且静息时膜内存在着相当数值的负电位,这种电场力也吸引Na+向膜内移动,动作电位是可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。
扩展资料:
注意事项:
1、在静息电位的基础上,给c一个适当的刺激,可触发其产生可传播的膜电位波动。AP峰电位:-70mV迅速去极化至-50mV的升支和迅速复极至静息电位水平的降支共同。
2、峰电位后出现的膜电位低幅、缓慢波动。后负电位(<静息电位),正后电位。
3、Na通道有关闭、激活、失活状态,关闭和失活是稳态,激活是瞬态,不应期K通道有激活和去激活状态,去极化期间电导不降低,只有回至起始水平才减小。
4、C内带负电荷的核酸和蛋白质多,吸引正电离子,所以通透大的进入的就多,所以膜对哪种离子(K)通透大就对静息电位的影响越大,越接近。
参考资料来源:百度百科-静息电位
参考资料来源:百度百科-动作电位
参考资料来源:百度百科-动作电位产生过程
参考资料来源:百度百科-静息电位产生机制
动作电位的产生机制简述
动作电位的产生机制:
动作电位上升支主要由Na+内流形成,接近于Na+的电-化学平衡电位。
1.细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。
2.细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。
3.K+外流增加形成了动作电位的下降支。
在不同的膜电位水平或动作电位发生过程中,Na+通道呈现三种基本功能状态:①备用状态:其特征是通道呈关闭状态,但对刺激可发生反应而迅速开放,因此,被称作备用状态;②激活状态:此时通道开放,离子可经通道进行跨膜扩散;③失活状态:通道关闭,离子不能通过,即使再强的刺激也不能使通道开放。细胞在静息状态即未接受刺激时,通道处于备用状态。当刺激作用时,通道被激活而开放。多数通道开放的时间很短,如产生锋电位上升支的Na+通道开放时间仅为1-2ms,随即进入失活状态。必须经过一段时间,通道才能由失活状态恢复至静息的备用状态。通道的功能状态,决定着细胞是否具有产生动作电位的能力,与不应期有密切联系
相关推荐: