酶切分析:用一定的内切酶去酶切DNA,然后观察酶切产物大小,来确定样品DNA是否正确的分析方法。
作用:在基因重组实验中要用限制性内切酶切开载体,同时要切去外源片段连段的部分碱基,形成粘性末端,与载体连接,通过转化进入感受态细胞,进行表达以及后续工作,这是基因工程的一个重要内容,如果是构建好的载体,通过酶切和琼脂糖凝胶电泳可以验证片段是否连接正确。
酶切法原理
酶切法原理:
限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。可分为三类:
Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作用且依赖于ATP的存在。Ⅰ类酶结合于识别位点并随机的切割识别位点不远处的DNA,而Ⅲ类酶在识别位点上切割DNA分子,然后从底物上解离。
Ⅱ类由两种酶组成:一种为限制性内切核酸酶(限制酶),它切割某一特异的核苷酸序列;另一种为独立的甲基化酶,其修饰同一识别序列。
Ⅱ类中的限制性内切酶在分子克隆中得到了广泛应用,它们是重组DNA的基础。绝大多数Ⅱ类限制酶识别长度为4至6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列:5'-
G↓AATTC-3'),有少数酶识别更长的序列或简并序列。
Ⅱ类酶切割位点在识别序列中,有的在对称轴处切割,产生平末端的DNA片段(如SmaⅠ:5'-CCC↓GGG-3');有的切割位点在对称轴一侧,产生带有单链突出末端的DNA片段称黏性末端,如EcoRⅠ切割识别序列后产生两个互补的黏性末端。
扩展资料:
限制性酶切分析法是指基因组或一段核酸用限制性内切酶消化产生的片段经电泳等方法分离形成独特的条带图谱,对DNA序列的特征进行的分析。
限制性酶是生物体内能识别并切割特异的双链DNA序列的一种内切核酸酶。它是可以将外来的DNA切断的酶,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用。
限制酶是基因工程中所用的重要切割工具。科学家已从原核生物中分离出了许多种限制酶,并且已经商品化,在基因工程中广泛使用。
根据限制酶切割的特点,可将它们分为两大类:一类是切割部位无特异性的;另一类是可特异性地识别核苷酸序列,即只能在一定的DNA序列上进行切割。
参考资料来源:百度百科-限制性酶切分析法
什么是酶切?
限制酶(英语:Restriction enzyme)又称限制内切酶或限制性内切酶(restriction endonuclease),全称限制性核酸内切酶[1],是一种能将双股DNA切开的酵素。切割方法是将糖类分子与磷酸之间的键结切断,进而于两条DNA链上各产生一个切口,且不破坏核苷酸与碱基。切割形式有两种,分别是可产生具有突出单股DNA的黏状末端,以及末端平整无凸起的平滑末端。[2]。由于断开的DNA片段可由另一种称为DNA连接酶的酵素黏合,因此染色体或DNA上不同的限制片段,得以经由剪接作用而结合在一起。
提质粒的目的是什么?酶切的目的是什么?
提质粒的目的是去除 RNA,将质粒与细菌基因组 DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒。
酶切的目的是对粘末端的DNA分子和载体分子进行切割,以获得相应的粘末端连接。酶切可以是单酶切也可以是双酶切。
扩展资料:
1、提质粒原理
碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc/KAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
2、酶切基本原理
利用限制性内切酶对DNA上特定序列的识别,来确定切割位点并实现切割,从而获得所需的特定序列。
它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰作用且依赖于ATP的存在。Ⅰ类酶结合于识别位点并随机的切割识别位点不远处的DNA,而Ⅲ类酶在识别位点上切割DNA分子,然后从底物上解离。Ⅱ类由两种酶组成: 一种为限制性内切核酸酶,它切割某一特异的核苷酸序列; 另一种为独立的甲基化酶,它修饰同一识别序列。
参考资料来源:百度百科——质粒抽提
参考资料来源:百度百科——酶切
相关推荐: